Logique

Maxime Bridoux

Exercice 1 (Définition inductive)

On considère un ensemble fini de noeuds G muni d'une relation binaire d'adjacence $n \to n'$, et un élément arbitraire $n_1 \in G$. On propose ci-dessous plusieurs définitions de sous-ensembles de G.

On définit inductivement $A \subseteq G$ par :

- $-n_1 \in A$;
- pour tous noeuds m, m' on a $m' \in A$ si $m \to m'$ et $m \in A$.

On définit inductivement $A' \subseteq G$ par :

- $-n_1 \in A'$;
- pour tous noeuds m, m' tel que $m' \in A'$, on a $m \to m'$.

On définit inductivement $U\subseteq G$ par :

— pour tout noeud m', on a $m' \in U$ si, pour tout noeud m tel que $m \to m'$, on a $m \in U$.

On définit inductivement $E \subseteq G$ par :

- pour tout noeud m', on a $m' \in E$ si il existe un noeud m tel que $m \to m'$ et $m \in E$.
- 1. Laquelle de ces définitions n'est pas une définition inductive bien formée ? On pourra exhiber la fonction sous-jacente pour montrer qu'elle n'est pas monotone.
- 2. Lequel des sous-ensembles restants est vide quel que soit G? Le démontrer par induction sur la définition du sous-ensemble, ou bien en revenant au théorème de point fixe pour la fonction monotone sous-jacente.
- 3. Un des sous-ensembles restants peut être vide, ou non, en fonction de G. Lequel? justifier en donnant des exemples de graphes rendant l'ensemble vide ou non.
- 4. Caractériser le sous-ensemble restant : l'appartenance d'un noeud à cet ensemble s'exprime directement en des termes usuels de théorie des graphes. Démontrer la caractérisation en donnant deux preuves par induction (une pour chaque direction de l'équivalence).

Exercice 2 (Fonction 91 de McCarthy)

On définit inductivement la relation binaire $\mathcal R$ sur les entiers naturels par :

- $n\mathcal{R}(n-10)$ si n > 100;
- $n\mathcal{R}x$ s'il existe y tel que $(n+11)\mathcal{R}y$ et $y\mathcal{R}x$ si $n \leq 100$.

Montrer que $n\mathcal{R}x$ si et seulement si $\begin{cases} x = n - 10 & \text{si } n > 100 \\ x = 91 & \text{sinon} \end{cases}$

Exercice 3 (Agreg info 2022, épreuve 1, problème 3)

Nous avons les faits suivants :

- 1. Si Informatix réussit sa preuve, il sera content.
- 2. S'il pleut, Informatix restera chez lui.
- 3. Si Informatix ne reste pas chez lui, alors il sera content.
- 4. Chez lui, Informatix s'entraîne.
- 5. Informatix réussira sa preuve s'il s'entraîne.
- 1. Formaliser ces faits à l'aide de formules logiques propositionelles.
- 2. Montrer, en déduction naturelle, qu'Informatix sera content.
- 3. Montrer en déduction naturelle les deux séquents suivants.
 - (a) $\vdash (A \Rightarrow B) \Rightarrow (\neg A \lor B)$
 - (b) $\vdash (\neg A \lor B) \Rightarrow (A \Rightarrow B)$
- 4. A partir de la règle $\vdash A \lor \neg A$, est-il possible de montrer $\vdash \neg \neg A \Rightarrow A$? Si oui, faire la démonstration, sinon expliquer pourquoi.